Promoter Regions, Genetic
"Promoter Regions, Genetic" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Descriptor ID |
D011401
|
MeSH Number(s) |
G02.111.570.080.689.675 G05.360.080.689.675 G05.360.340.024.340.137.750.680
|
Concept/Terms |
Promoter Regions, Genetic- Promoter Regions, Genetic
- Genetic Promoter Region
- Genetic Promoter Regions
- Promoter Region, Genetic
- Region, Genetic Promoter
- Regions, Genetic Promoter
- Promoter Regions
- Promoter Region
- Region, Promoter
- Regions, Promoter
- Promotor Regions
- Promotor Region
- Region, Promotor
- Regions, Promotor
rRNA Promoter- rRNA Promoter
- Promoter, rRNA
- Promoters, rRNA
- rRNA Promoters
Promoter, Genetic- Promoter, Genetic
- Genetic Promoter
- Genetic Promoters
- Promoters, Genetic
- Promotor, Genetic
- Genetic Promotor
- Genetic Promotors
- Promotors, Genetic
Pseudopromoter, Genetic- Pseudopromoter, Genetic
- Genetic Pseudopromoter
- Genetic Pseudopromoters
- Pseudopromoters, Genetic
|
Below are MeSH descriptors whose meaning is more general than "Promoter Regions, Genetic".
Below are MeSH descriptors whose meaning is more specific than "Promoter Regions, Genetic".
This graph shows the total number of publications written about "Promoter Regions, Genetic" by people in this website by year, and whether "Promoter Regions, Genetic" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
1995 | 1 | 0 | 1 | 1997 | 0 | 1 | 1 | 1999 | 0 | 2 | 2 | 2003 | 1 | 0 | 1 | 2004 | 0 | 1 | 1 | 2005 | 0 | 1 | 1 | 2006 | 1 | 0 | 1 | 2007 | 1 | 1 | 2 | 2008 | 1 | 1 | 2 | 2009 | 2 | 0 | 2 | 2010 | 0 | 3 | 3 | 2011 | 1 | 0 | 1 | 2012 | 1 | 1 | 2 | 2013 | 1 | 4 | 5 | 2014 | 1 | 5 | 6 | 2015 | 0 | 1 | 1 | 2016 | 2 | 2 | 4 | 2017 | 0 | 1 | 1 | 2018 | 0 | 4 | 4 | 2019 | 0 | 2 | 2 | 2021 | 0 | 3 | 3 |
To return to the timeline, click here.
Below are the most recent publications written about "Promoter Regions, Genetic" by people in Profiles.
-
Ahmed I, Yusuf K, Roy BC, Stubbs J, Anant S, Attard TM, Sampath V, Umar S. Dietary Interventions Ameliorate Infectious Colitis by Restoring the Microbiome and Promoting Stem Cell Proliferation in Mice. Int J Mol Sci. 2021 Dec 29; 23(1).
-
Srivastava T, Heruth DP, Duncan RS, Rezaiekhaligh MH, Garola RE, Priya L, Zhou J, Boinpelly VC, Novak J, Ali MF, Joshi T, Alon US, Jiang Y, McCarthy ET, Savin VJ, Sharma R, Johnson ML, Sharma M. Transcription Factor ?-Catenin Plays a Key Role in Fluid Flow Shear Stress-Mediated Glomerular Injury in Solitary Kidney. Cells. 2021 05 19; 10(5).
-
Watt S, Vasquez L, Walter K, Mann AL, Kundu K, Chen L, Sims Y, Ecker S, Burden F, Farrow S, Farr B, Iotchkova V, Elding H, Mead D, Tardaguila M, Ponstingl H, Richardson D, Datta A, Flicek P, Clarke L, Downes K, Pastinen T, Fraser P, Frontini M, Javierre BM, Spivakov M, Soranzo N. Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease. Nat Commun. 2021 04 16; 12(1):2298.
-
Ke X, Xing B, Dahl MJ, Alvord J, McKnight RA, Lane RH, Albertine KH. Hippocampal epigenetic and insulin-like growth factor alterations in noninvasive versus invasive mechanical ventilation in preterm lambs. Pediatr Res. 2021 11; 90(5):998-1008.
-
Ke X, Fu Q, Sterrett J, Hillard CJ, Lane RH, Majnik A. Adverse maternal environment and western diet impairs cognitive function and alters hippocampal glucocorticoid receptor promoter methylation in male mice. Physiol Rep. 2020 04; 8(8):e14407.
-
Dandawate P, Ghosh C, Palaniyandi K, Paul S, Rawal S, Pradhan R, Sayed AAA, Choudhury S, Standing D, Subramaniam D, Padhye SB, Gunewardena S, Thomas SM, Neil MO, Tawfik O, Welch DR, Jensen RA, Maliski S, Weir S, Iwakuma T, Anant S, Dhar A. The Histone Demethylase KDM3A, Increased in Human Pancreatic Tumors, Regulates Expression of DCLK1 and Promotes Tumorigenesis in Mice. Gastroenterology. 2019 12; 157(6):1646-1659.e11.
-
Ma Y, Baltezor M, Rajewski L, Crow J, Samuel G, Staggs VS, Chastain KM, Toretsky JA, Weir SJ, Godwin AK. Targeted inhibition of histone deacetylase leads to suppression of Ewing sarcoma tumor growth through an unappreciated EWS-FLI1/HDAC3/HSP90 signaling axis. J Mol Med (Berl). 2019 07; 97(7):957-972.
-
Winham SJ, Larson NB, Armasu SM, Fogarty ZC, Larson MC, McCauley BM, Wang C, Lawrenson K, Gayther S, Cunningham JM, Fridley BL, Goode EL. Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Hum Mol Genet. 2019 04 15; 28(8):1331-1342.
-
Linakis MW, Cook SF, Kumar SS, Liu X, Wilkins DG, Gaedigk R, Gaedigk A, Sherwin CMT, van den Anker JN. Polymorphic Expression of UGT1A9 is Associated with Variable Acetaminophen Glucuronidation in Neonates: A Population Pharmacokinetic and Pharmacogenetic Study. Clin Pharmacokinet. 2018 10; 57(10):1325-1336.
-
Orlando G, Law PJ, Cornish AJ, Dobbins SE, Chubb D, Broderick P, Litchfield K, Hariri F, Pastinen T, Osborne CS, Taipale J, Houlston RS. Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer. Nat Genet. 2018 10; 50(10):1375-1380.
|
People People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|