Mice, Inbred NOD
"Mice, Inbred NOD" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked.
Descriptor ID |
D016688
|
MeSH Number(s) |
B01.050.050.199.520.520.565 B01.050.150.900.649.865.635.505.500.400.565
|
Concept/Terms |
Mice, Inbred NOD- Mice, Inbred NOD
- Inbred NOD Mice
- NOD Mice, Inbred
- Mouse, NOD
- NOD Mouse
- Mouse, Inbred NOD
- Inbred NOD Mouse
- NOD Mouse, Inbred
- Nonobese Diabetic Mouse
- Diabetic Mouse, Nonobese
- Mouse, Nonobese Diabetic
- Non-Obese Diabetic Mouse
- Diabetic Mouse, Non-Obese
- Mouse, Non-Obese Diabetic
- Non Obese Diabetic Mouse
- Non-Obese Diabetic Mice
- Diabetic Mice, Non-Obese
- Mice, Non-Obese Diabetic
- Non Obese Diabetic Mice
- Mice, NOD
- NOD Mice
- Nonobese Diabetic Mice
- Diabetic Mice, Nonobese
- Mice, Nonobese Diabetic
|
Below are MeSH descriptors whose meaning is more general than "Mice, Inbred NOD".
Below are MeSH descriptors whose meaning is more specific than "Mice, Inbred NOD".
This graph shows the total number of publications written about "Mice, Inbred NOD" by people in this website by year, and whether "Mice, Inbred NOD" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
2012 | 0 | 1 | 1 | 2013 | 0 | 1 | 1 | 2014 | 0 | 1 | 1 | 2015 | 0 | 1 | 1 | 2019 | 0 | 1 | 1 | 2020 | 0 | 1 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Mice, Inbred NOD" by people in Profiles.
-
Chung C, Sweha SR, Pratt D, Tamrazi B, Panwalkar P, Banda A, Bayliss J, Hawes D, Yang F, Lee HJ, Shan M, Cieslik M, Qin T, Werner CK, Wahl DR, Lyssiotis CA, Bian Z, Shotwell JB, Yadav VN, Koschmann C, Chinnaiyan AM, Bl?ml S, Judkins AR, Venneti S. Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell. 2020 09 14; 38(3):334-349.e9.
-
Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, De Jay N, Deshmukh S, Chen CCL, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun. 2019 03 19; 10(1):1262.
-
Elsarraj HS, Hong Y, Valdez KE, Michaels W, Hook M, Smith WP, Chien J, Herschkowitz JI, Troester MA, Beck M, Inciardi M, Gatewood J, May L, Cusick T, McGinness M, Ricci L, Fan F, Tawfik O, Marks JR, Knapp JR, Yeh HW, Thomas P, Carrasco DR, Fields TA, Godwin AK, Behbod F. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion. Breast Cancer Res. 2015 Sep 17; 17:128.
-
Dang MT, Wehrli S, Dang CV, Curran T. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice. PLoS One. 2015; 10(7):e0133633.
-
Baker GJ, Chockley P, Yadav VN, Doherty R, Ritt M, Sivaramakrishnan S, Castro MG, Lowenstein PR. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res. 2014 Sep 15; 74(18):5079-90.
-
Waibel M, Solomon VS, Knight DA, Ralli RA, Kim SK, Banks KM, Vidacs E, Virely C, Sia KC, Bracken LS, Collins-Underwood R, Drenberg C, Ramsey LB, Meyer SC, Takiguchi M, Dickins RA, Levine R, Ghysdael J, Dawson MA, Lock RB, Mullighan CG, Johnstone RW. Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Rep. 2013 Nov 27; 5(4):1047-59.
-
Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T. MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene. 2013 Jan 24; 32(4):462-70.
-
Winer S, Astsaturov I, Gaedigk R, Hammond-McKibben D, Pilon M, Song A, Kubiak V, Karges W, Arpaia E, McKerlie C, Zucker P, Singh B, Dosch HM. ICA69(null) nonobese diabetic mice develop diabetes, but resist disease acceleration by cyclophosphamide. J Immunol. 2002 Jan 01; 168(1):475-82.
-
Winer S, Gunaratnam L, Astsatourov I, Cheung RK, Kubiak V, Karges W, Hammond-McKibben D, Gaedigk R, Graziano D, Trucco M, Becker DJ, Dosch HM. Peptide dose, MHC affinity, and target self-antigen expression are critical for effective immunotherapy of nonobese diabetic mouse prediabetes. J Immunol. 2000 Oct 01; 165(7):4086-94.
-
Karges W, Hammond-McKibben D, Gaedigk R, Shibuya N, Cheung R, Dosch HM. Loss of self-tolerance to ICA69 in nonobese diabetic mice. Diabetes. 1997 Oct; 46(10):1548-56.
|
People People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|